Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add filters








Year range
1.
Journal of Veterinary Science ; : e5-2023.
Article in English | WPRIM | ID: wpr-967911

ABSTRACT

The H9N2 avian influenza (AI) has become endemic in poultry in many countries since the 1990s, which has caused considerable economic losses in the poultry industry. Considering the long history of the low pathogenicity H9N2 AI in many countries, once H9N2 AI is introduced, it is more difficult to eradicate than high pathogenicity AI. Various preventive measures and strategies, including vaccination and active national surveillance, have been used to control the Y439 lineage of H9N2 AI in South Korea, but it took a long time for the H9N2 virus to disappear from the fields. By contrast, the novel Y280 lineage of H9N2 AI was introduced in June 2020 and has spread nationwide. This study reviews the history, genetic and pathogenic characteristics, and control strategies for Korean H9N2 AI. This review may provide some clues for establishing control strategies for endemic AIV and a newly introduced Y280 lineage of H9N2 AI in South Korea.

2.
Journal of Veterinary Science ; : e21-2021.
Article in English | WPRIM | ID: wpr-901445

ABSTRACT

In this study, we describe the isolation and characterization of previously unreported Y280-lineage H9N2 viruses from two live bird markets in Korea in June 2020. Genetic analysis revealed that they were distinct from previous H9N2 viruses circulating in Korea and had highest homology to A/chicken/Shandong/1844/2019(H9N2) viruses. Their genetic constellation showed they belonged to genotype S, which is the predominant genotype in China since 2010, where genotype S viruses have infected humans and acted as internal gene donors to H5 and H7 zoonotic influenza viruses. Active surveillance and control measures need to be enhanced to protect the poultry industry and public health.

3.
Journal of Veterinary Science ; : e21-2021.
Article in English | WPRIM | ID: wpr-893741

ABSTRACT

In this study, we describe the isolation and characterization of previously unreported Y280-lineage H9N2 viruses from two live bird markets in Korea in June 2020. Genetic analysis revealed that they were distinct from previous H9N2 viruses circulating in Korea and had highest homology to A/chicken/Shandong/1844/2019(H9N2) viruses. Their genetic constellation showed they belonged to genotype S, which is the predominant genotype in China since 2010, where genotype S viruses have infected humans and acted as internal gene donors to H5 and H7 zoonotic influenza viruses. Active surveillance and control measures need to be enhanced to protect the poultry industry and public health.

4.
Journal of Veterinary Science ; : e27-2019.
Article in English | WPRIM | ID: wpr-758911

ABSTRACT

In 2016, novel H5N6 highly pathogenic avian influenza virus emerged in Korea. During the outbreak, the virus caused the largest culling, especially in brown chicken lines. We determined the pathogenicity and transmissibility of the virus in 2 white chicken lines of the specific pathogen-free chickens, broilers and brown chicken line of Korean native chicken (KNC). A KNC had a longer virus shedding period and longer mean death time than others. Our study showed that this characteristic in the KNC might have contributed to a farm-to-farm transmission of the brown chicken farms.


Subject(s)
Animals , Agriculture , Chickens , Influenza in Birds , Korea , Virulence , Virus Shedding
5.
Journal of Veterinary Science ; : 850-854, 2018.
Article in English | WPRIM | ID: wpr-758860

ABSTRACT

Novel H5N6 highly pathogenic avian influenza viruses (HPAIVs) were isolated from duck farms and migratory bird habitats in South Korea in November to December 2017. Genetic analysis demonstrated that at least two genotypes of H5N6 were generated through reassortment between clade 2.3.4.4 H5N8 HPAIVs and Eurasian low pathogenic avian influenza virus in migratory birds in late 2017, suggesting frequent reassortment of clade 2.3.4.4 H5 HPAIVs and highlighting the need for systematic surveillance in Eurasian breeding grounds.


Subject(s)
Animals , Agriculture , Birds , Breeding , Ducks , Ecosystem , Genetic Heterogeneity , Genotype , Influenza in Birds , Korea
6.
Clinical and Experimental Reproductive Medicine ; : 149-153, 2018.
Article in English | WPRIM | ID: wpr-718522

ABSTRACT

Stem cells are undifferentiated cells capable of self-renewal and differentiation into various cell lineages. Stem cells are responsible for the development of organs and regeneration of damaged tissues. The highly regenerative nature of the human endometrium during reproductive age suggests that stem cells play a critical role in endometrial physiology. Bone marrow-derived cells migrate to the uterus and participate in the healing and restoration of functionally or structurally damaged endometrium. This review summarizes recent research into the potential therapeutic effects of bone marrow-derived stem cells in conditions involving endometrial impairment.


Subject(s)
Female , Humans , Bone Marrow , Cell Lineage , Endometrium , Physiology , Regeneration , Stem Cells , Therapeutic Uses , Uterus
7.
Journal of Veterinary Science ; : 89-94, 2017.
Article in English | WPRIM | ID: wpr-224457

ABSTRACT

During 2014–2016 HPAI outbreak in South Korea, H5N8 viruses have been mostly isolated in western areas of the country, which provide wintering habitats for wild birds and have a high density of poultry. Analysis of a total of 101 Korean isolates revealed that primitive H5N8 viruses (C0 group) have evolved into multiple genetic subgroups appearing from various epidemiological sources, namely, the viruses circulating in poultry farms (C1 and C5) and those reintroduced by migratory birds in late 2014 (C2 and C4). No C3 groups were detected. The results may explain the possible reasons of the recent long-term persistence of H5N8 viruses in South Korea, and help to develop the effective measures in controlling HPAI viruses.


Subject(s)
Agriculture , Birds , Ecosystem , Genetic Variation , Korea , Poultry
8.
Journal of Veterinary Science ; : 299-306, 2017.
Article in English | WPRIM | ID: wpr-115777

ABSTRACT

A/Puerto Rico/8/34 (PR8)-derived recombinant viruses have been used for seasonal flu vaccines; however, they are insufficient for vaccines against some human-fatal H5N1 highly pathogenic avian influenza (HPAI) viruses (HPAIV) due to low productivity. Additionally, the polymerase basic 2 (PB2) protein, an important mammalian-pathogenicity determinant, of PR8 possesses several mammalian-pathogenic mutations. We previously reported two avian PB2 genes (01310 and 0028) related to efficient replication in embryonated chicken eggs (ECEs) and nonpathogenicity in BALB/c mice. In this study, we generated PR8-derived H5N1 recombinant viruses harboring hemagglutinin (attenuated) and neuraminidase genes of a clade 2.3.2.1c H5N1 HPAIV (K10-483), as well as the 01310 or 0028 PB2 genes, and investigated their replication and immunogenicity. Compared with a control virus harboring six internal PR8 genes (rK10-483), the recombinant viruses possessing the 01310 and 0028 PB2 genes showed significantly higher replication efficiency in ECEs and higher antibody titers in chickens. In contrast to rK10-483, none of the viruses replicated in BALB/c mice, and all showed low titers in Madin-Darby canine kidney cells. Additionally, the recombinant viruses did not induce a neutralization antibody but elicited decreased protective immune responses against K10-483 in mice. Thus, the highly replicative and mammalian nonpathogenic recombinant H5N1 strains might be promising vaccine candidates against HPAI in poultry.


Subject(s)
Animals , Mice , Chickens , Efficiency , Eggs , Hemagglutinins , Influenza in Birds , Influenza Vaccines , Kidney , Neuraminidase , Ovum , Poultry , Reverse Genetics , Seasons , Vaccines , Virulence
9.
Journal of Veterinary Science ; : 421-425, 2016.
Article in English | WPRIM | ID: wpr-193783

ABSTRACT

Here, we describe a uracil-DNA glycosylase (UNG)-treated reverse transcription loop-mediated isothermal amplification (uRT-LAMP) for the visual detection of all subtypes of avian influenza A virus (AIV). The uRT-LAMP assay can prevent unwanted amplification by carryover contamination of the previously amplified DNA, although the detection limit of the uRT-LAMP assay is 10-fold lower than that of the RT-LAMP without a UNG treatment. To the best of our knowledge, this is the first successful application of deoxyuridine triphosphate/UNG strategy in RT-LAMP for AIV detection, and the assay can be applied for the rapid, and reliable diagnosis of AIVs, even in contaminated samples.


Subject(s)
Animals , Deoxyuridine , Diagnosis , DNA , Influenza in Birds , Limit of Detection , Reverse Transcription , Uracil-DNA Glycosidase
10.
Journal of Veterinary Science ; : 237-240, 2015.
Article in English | WPRIM | ID: wpr-86393

ABSTRACT

In 2014, two genetically distinct H5N8 highly pathogenic avian influenza (HPAI) viruses were isolated from poultry and wild birds in Korea. The intravenous pathogenicity indices for the two representative viruses were both 3.0. Mortality of chickens intranasally inoculated with the two H5N8 viruses was 100% with a mean death times of 2.5 and 4.5 days. Mortality rates of the contact groups for the two H5N8 viruses were 33.3% and 66.6%. Our study showed that transmissibility of the novel H5N8 viruses was different from that of previously identified H5N1 HPAI viruses, possibly due to genetic changes.


Subject(s)
Animals , Chickens , Disease Outbreaks/veterinary , Influenza A virus/pathogenicity , Influenza in Birds/mortality , Poultry Diseases/mortality , Republic of Korea/epidemiology , Virulence
11.
Clinical and Experimental Vaccine Research ; : 12-28, 2014.
Article in English | WPRIM | ID: wpr-36957

ABSTRACT

Vaccination is one of the most effective and cost-benefit interventions that prevent the mortality and reduce morbidity from infectious pathogens. However, the licensed influenza vaccine induces strain-specific immunity and must be updated annually based on predicted strains that will circulate in the upcoming season. Influenza virus still causes significant health problems worldwide due to the low vaccine efficacy from unexpected outbreaks of next epidemic strains or the emergence of pandemic viruses. Current influenza vaccines are based on immunity to the hemagglutinin antigen that is highly variable among different influenza viruses circulating in humans and animals. Several scientific advances have been endeavored to develop universal vaccines that will induce broad protection. Universal vaccines have been focused on regions of viral proteins that are highly conserved across different virus subtypes. The strategies of universal vaccines include the matrix 2 protein, the hemagglutinin HA2 stalk domain, and T cell-based multivalent antigens. Supplemented and/or adjuvanted vaccination in combination with universal target antigenic vaccines would have much promise. This review summarizes encouraging scientific advances in the field with a focus on novel vaccine designs.


Subject(s)
Animals , Humans , Disease Outbreaks , Hemagglutinins , Influenza Vaccines , Influenza, Human , Mortality , Orthomyxoviridae , Pandemics , Seasons , Vaccination , Vaccines , Viral Proteins , Viruses
12.
Korean Journal of Veterinary Research ; : 223-230, 2012.
Article in English | WPRIM | ID: wpr-206188

ABSTRACT

The worldwide distribution and continuing genetic mutation of avian influenza virus (AIV) has been posed a great threat to human and animal health. A comparison of 3 isolates of AIV H9N2, A/chicken/Korea/KBNP-0028/00 (H9N2) (KBNP-0028), A/chicken/Korea/SNU8011/08 (H9N2) (SNU 8011) and an inactivated oil vaccine strain A/chicken/Korea/01310/01 (H9N2) (01310), was performed. The former 2 AIVs were isolated from field cases before and after the application of an inactivated H9N2 vaccine in 2007, respectively. The antigenic relationship, viral shedding, tissue tropism and genetic analysis were examined. The comparison of virus shedding from the cloaca and the oropharynx revealed that both isolates were more frequently isolated from the upper respiratory tract (90~100%) 1 day post inoculation (DPI) compared with isolation 5 DPI from gastrointestinal tracts (10~60%). Moreover, the isolate KBNP-0028 were recovered from all organs including bone marrow, brain and kidneys, indicating higher ability for broad tissue dissemination than that of SNU 8011. KBNP-0028 replicated earlier than other strains and with a higher titer than SNU 8011. In full-length nucleotide sequences of the NA gene and a partial sequence of the HA gene of SNU 8011, we found that there might be significant changes in tissue tropism, virus replication and genetic mutation in AIV H9N2 isolates.


Subject(s)
Animals , Humans , Base Sequence , Bone Marrow , Brain , Cloaca , Gastrointestinal Tract , Influenza in Birds , Kidney , Oropharynx , Population Characteristics , Respiratory System , Sprains and Strains , Tropism , Virus Replication , Virus Shedding , Viruses
13.
Journal of Veterinary Science ; : 373-377, 2011.
Article in English | WPRIM | ID: wpr-186144

ABSTRACT

Climate change induced by recent global warming may have a significant impact on vector-borne and zoonotic diseases. For example, the distribution of Japanese encephalitis virus (JEV) has expanded into new regions. We surveyed the levels of hemagglutination-inhibition (HI) antibodies against JEV (Family Flaviviridae, genus Flavivirus) in wild birds captured in Korea. Blood samples were collected from 1,316 wild birds including the following migratory birds: Oceanodroma castro (n = 4), Anas formosa (n = 7), Anas penelope (n = 20), Fulica atra (n = 30), Anas acuta (n = 89), Anas crecca (n = 154), Anas platyrhynchos (n = 214), Aix galericulata (n = 310), and Anas poecilorhyncha (n = 488). All were captured in 16 locations in several Korea provinces between April 2007 and December 2009. Out of the 1,316 serum samples tested, 1,141 (86.7%) were positive for JEV. Wild birds captured in 2009 had a higher seroprevalence of ant-JEV antibodies than those captured in 2007. Wild birds with an HI antibody titer of 1 : 1,280 or higher accounted for 21.2% (280/1,316) of the animals tested. These findings indicated that wild birds from the region examined in our study have been exposed to JEV and may pose a high risk for introducing a new JEV genotype into Korea.


Subject(s)
Animals , Animal Migration , Animals, Wild , Bird Diseases/epidemiology , Birds , Encephalitis Virus, Japanese/genetics , Encephalitis, Japanese/blood , Genotype , Hemagglutination Inhibition Tests , Population Surveillance , Republic of Korea/epidemiology , Seroepidemiologic Studies
14.
Journal of Veterinary Science ; : 161-163, 2010.
Article in English | WPRIM | ID: wpr-221266

ABSTRACT

In order to control the H9N2 subtype low pathogenic avian influenza (LPAI), an inactivated vaccine has been used in Korea since 2007. The Korean veterinary authority permitted the use of a single H9N2 LPAI vaccine strain to simplify the evolution of the circulating virus due to the immune pressure caused by the vaccine use. It is therefore important to determine the suitability of the vaccine strain in the final inactivated oil emulsion LPAI vaccine. In this study, we applied molecular rather than biological methods to verify the suitability of the vaccine strain used in commercial vaccines and successfully identified the strain by comparing the nucleotide sequences of the hemagglutinin and neuraminidase genes with that of the permitted Korean LPAI vaccine strain. It is thought that the method used in this study might be successfully applied to other viral genes of the LPAI vaccine strain and perhaps to other veterinary oil emulsion vaccines.


Subject(s)
Animals , Base Sequence , Birds , DNA, Viral/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Influenza A Virus, H9N2 Subtype/genetics , Influenza Vaccines/genetics , Influenza in Birds/immunology , Molecular Sequence Data , Neuraminidase/chemistry , Polymerase Chain Reaction/veterinary , Republic of Korea , Sequence Alignment , Vaccines, Inactivated/genetics
15.
Journal of Veterinary Science ; : 59-66, 2010.
Article in English | WPRIM | ID: wpr-160872

ABSTRACT

Avian metapneumovirus (aMPV) causes upper respiratory tract infections in chickens and turkeys. Although the swollen head syndrome (SHS) associated with aMPV in chickens has been reported in Korea since 1992, this is the study isolating aMPV from chickens in this country. We examined 780 oropharyngeal swab or nasal turbinate samples collected from 130 chicken flocks to investigate the prevalence of aMPV and to isolate aMPV from chickens from 2004-2008. Twelve aMPV subtype A and 13 subtype B strains were detected from clinical samples by the aMPV subtype A and B multiplex real-time reverse transcription polymerase chain reaction (RRT-PCR). Partial sequence analysis of the G glycoprotein gene confirmed that the detected aMPVs belonged to subtypes A and B. Two aMPVs subtype A out of the 25 detected aMPVs were isolated by Vero cell passage. In animal experiments with an aMPV isolate, viral RNA was detected in nasal discharge, although no clinical signs of SHS were observed in chickens. In contrast to chickens, turkeys showed severe nasal discharge and a relatively higher titer of viral excretion than chickens. Here, we reveal the co-circulation of aMPV subtypes A and B, and isolate aMPVs from chicken flocks in Korea.


Subject(s)
Animals , Antibodies, Viral/blood , Base Sequence , Chickens , Glycoproteins/chemistry , Metapneumovirus/immunology , Molecular Sequence Data , Paramyxoviridae Infections/immunology , Phylogeny , Poultry Diseases/immunology , RNA, Viral/chemistry , Respiratory Tract Infections/immunology , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Sequence Alignment , Sequence Analysis, DNA , Serotyping , Specific Pathogen-Free Organisms , Turkeys
16.
Journal of Veterinary Science ; : 53-60, 2009.
Article in English | WPRIM | ID: wpr-151234

ABSTRACT

Highly pathogenic avian influenza viruses (HPAIV) of the H5N1 subtype have spread since 2003 in poultry and wild birds in Asia, Europe and Africa. In Korea, the highly pathogenic H5N1 avian influenza outbreaks took place in 2003/2004, 2006/2007 and 2008. As the 2006/2007 isolates differ phylogenetically from the 2003/2004 isolates, we assessed the clinical responses of chickens, ducks and quails to intranasal inoculation of the 2006/2007 index case virus, A/chicken/Korea/IS/06. All the chickens and quails died on 3 days and 3-6 days post-inoculation (DPI), respectively, whilst the ducks only showed signs of mild depression. The uninoculated chickens and quails placed soon after with the inoculated flock died on 5.3 and 7.5 DPI, respectively. Both oropharyngeal and cloacal swabs were taken for all three species during various time intervals after inoculation. It was found that oropharyngeal swabs showed higher viral titers than in cloacal swabs applicable to all three avian species. The chickens and quails shed the virus until they died (up to 3 to 6 days after inoculation, respectively) whilst the ducks shed the virus on 2-4 DPI. The postmortem tissues collected from the chickens and quails on day 3 and days 4-5 and from clinically normal ducks that were euthanized on day 4 contained the virus. However, the ducks had significantly lower viral titers than the chickens or quails. Thus, the three avian species varied significantly in their clinical signs, mortality, tissue virus titers, and duration of virus shedding. Our observations suggest that duck and quail farms should be monitored particularly closely for the presence of HPAIV so that further virus transmission to other avian or mammalian hosts can be prevented.


Subject(s)
Animals , Antibodies, Viral/blood , Brain/virology , Chickens , Coturnix , Ducks , Heart/virology , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza in Birds/epidemiology , Kidney/virology , Korea/epidemiology , Lung/virology , Virus Shedding
17.
Journal of Veterinary Science ; : 323-329, 2009.
Article in English | WPRIM | ID: wpr-67602

ABSTRACT

Active serologic surveillance is necessary to control the spread of the avian influenza virus (AIV). In this study, we evaluated a commercially-available cELISA in terms of its ability to detect AIV antibodies in the sera of 3,358 animals from twelve species. cELISA detected antibodies against reference H1- through H15-subtype AIV strains without cross reactivity. Furthermore, the cELISA was able to detect antibodies produced following a challenge of the AIV H9N2 subtype in chickens, or following vaccination of the AIV H9 or H5 subtypes in chickens, ducks and geese. Next, we tested the sensitivity and specificity of the cELISA with sera from twelve different animal species, and compared these results with those obtained by the hemagglutination-inhibition (HI) test, the "gold standard" in AIV sera surveillance, a second commercially-available cELISA (IZS ELISA), or the agar gel precipitation (AGP) test. Compared with the HI test, the sensitivities and specificities of cELISA were 95% and 96% in chicken, 86% and 88% in duck, 97% and 100% in turkey, 100% and 87% in goose, and 91% and 97% in swine, respectively. The sensitivities and specificities of the cELISA in this study were higher than those of IZS ELISA for the duck, turkey, goose, and grey partridge sera samples. The results of AGP test against duck and turkey sera also showed significant correlation with the results of cELISA (R-value >0.9). In terms of flock sensitivity, the cELISA correlated better with the HI test than with commercially-available indirect ELISAs, with 100% flock sensitivity.


Subject(s)
Animals , Antibodies, Viral/blood , Birds , Enzyme-Linked Immunosorbent Assay/methods , Horses , Influenza A virus/immunology , Influenza Vaccines/immunology , Influenza in Birds/blood , Sensitivity and Specificity , Serologic Tests , Species Specificity , Swine
18.
Journal of Veterinary Science ; : 67-74, 2008.
Article in English | WPRIM | ID: wpr-15563

ABSTRACT

The H9N2 subtype low pathogenic avian influenza is one of the most prevalent avian diseases worldwide, and was first documented in 1996 in Korea. This disease caused serious economic loss in Korea's poultry industry. In order to develop an oil-based inactivated vaccine, a virus that had been isolated in 2001 (A/chicken/Korea/01310/ 2001) was selected based on its pathogenic, antigenic, and genetic properties. However, in animal experiments, the efficacy of the vaccine was found to be very low without concentration of the antigen (2(7) to 2(10) hemagglutinin unit). In order to overcome the low productivity, we passaged the vaccine candidate virus to chicken eggs. After the 20th passage, the virus was approximately ten times more productive compared with the parent virus. For the most part, the passaged virus maintained the hemagglutinin cleavage site amino acid motif (PATSGR/GLF) and had only three amino acid changes (T133N, V216G, E439D, H3 numbering) in the hemagglutinin molecule, as well as 18 amino acid deletions (55-72) and one amino acid change (E54D) in the NA stalk region. The amino acid changes did not significantly affect the antigenicity of the vaccine virus when tested by hemagglutination inhibition assay. Though not complete, the vaccine produced after the 20th passage of the virus (01310 CE20) showed good protection against a homologous and recent Korean isolate (A/chicken/Korea/Q30/2004) in specific pathogen- free chickens. The vaccine developed in this study would be helpful for controlling the H9N2 LPAI in Korea.


Subject(s)
Animals , Chickens , Gene Expression Regulation, Viral , Hemagglutinins/genetics , Influenza A Virus, H9N2 Subtype/immunology , Influenza Vaccines/immunology , Influenza in Birds/epidemiology , Korea/epidemiology , Neuraminidase/genetics , Specific Pathogen-Free Organisms , Time Factors , Vaccines, Inactivated/immunology
19.
Journal of Veterinary Science ; : 301-308, 2008.
Article in English | WPRIM | ID: wpr-97500

ABSTRACT

Recombinant baculoviruses containing the fusion (F) and hemagglutinin-neuraminidase (HN) glycoprotein gene of the viscerotropic velogenic (vv) Newcastle disease virus (NDV) isolate, Kr-005/00, and a lentogenic La Sota strain of the NDV were constructed in an attempt to develop an effective subunit vaccine to the recent epizootic vvNDV. The level of protection was determined by evaluating the clinical signs, mortality, and virus shedding from the oropharynx and cloaca of chickens after a challenge with vvNDV Kr-005/00. The recombinant ND F (rND F) and recombinant HN (rND HN) glycoproteins derived from the velogenic strain provided good protection against the clinical signs and mortality, showing a 0.00 PI value and 100% protection after a booster immunization. On the other hand, the combined rND F + HN glycoprotein derived from the velogenic strain induced complete protection (0.00 PI value and 100% protection) and significantly reduced the amount of virus shedding even after a single immunization. The rND F and rND HN glycoproteins derived from the velogenic strain had a slightly, but not significantly, greater protective effect than the lentogenic strain. These results suggest that the combined rND F + HN glycoprotein derived from vvNDV can be an ideal subunit marker vaccine candidate in chickens in a future ND eradication program.


Subject(s)
Animals , Baculoviridae/genetics , Chickens/virology , DNA Primers , Gene Amplification , HN Protein/genetics , Korea , Marek Disease/immunology , Newcastle Disease/immunology , Spodoptera/virology , Vaccines, Synthetic/genetics , Viral Vaccines/genetics
20.
Korean Circulation Journal ; : 328-332, 2004.
Article in Korean | WPRIM | ID: wpr-178960

ABSTRACT

Thrombi in the right atrium (RA) are infrequent, and are rarely diagnosed before death. In addition, right heart thrombi are frequently associated with major pulmonary thromboembolism, and carry a very high risk of mortality, and therefore, require accurate diagnosis and prompt treatment. RA thrombi are generally associated with dilatation of the atrium, a low cardiac output state, intracardiac catheters, such as endocardial pacemakers and central venous hyperalimentation catheters, recent cardiac surgery, involving the atrium, and peripheral deep vein thrombosis. In addition, some systemic diseases, such as malignant tumors, amyloidosis and nephrotic syndrome, have been shown to contribute to the formation of an intracardiac thrombus. Echocardiography is valuable in the diagnosis of RA thrombi. There are some options in the treatment of RA thrombi, such as anticoagulant therapy using heparin, thrombolytic therapy and surgical removal. However, there is still adverse criticism as to the selection of the correct treatment method. A patient with RA thrombi, who presented with sudden cardiogenic shock, was diagnosed by two-dimensional echocardiography. He had been in a prolonged bed-ridden state because of quadriparesis caused by an injury to the cervical spine. The RA thrombi were successfully treated with anticoagulant and thrombolytic agents.


Subject(s)
Humans , Amyloidosis , Cardiac Catheters , Cardiac Output, Low , Catheters , Diagnosis , Dilatation , Echocardiography , Fibrinolytic Agents , Heart , Heart Atria , Heparin , Mortality , Nephrotic Syndrome , Pulmonary Embolism , Quadriplegia , Shock, Cardiogenic , Spine , Thoracic Surgery , Thrombolytic Therapy , Thrombosis , Venous Thrombosis
SELECTION OF CITATIONS
SEARCH DETAIL